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Frequency Analysis of Semiconductor Devices using Full-Band
Cellular Monte Carlo Simulations.
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Abstract— The goal of this work is to use a
particle-based simulation tool to perform a com-
parative study of two techniques used to calculate
the small signal response of semiconductor devices.
Several GaAs and Si devices have been modeled,
simulated in the frequency domain to derive their
frequency dependent complex output impedance.
Conclusions are drawn regarding the applicability
and advantages of both approaches.
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I. Full-band, particle-based CMC

Particle-based methods are based on the semi-
classical description of charge transport through
the stochastic solution of the Boltzmann Trans-
port Equation (BTE) [1], coupled with a self-
consistent solution of Poisson’s Equation (PE),
used to account for the spacial variation of the
quasi-static electric field. The PE is solved us-
ing a multi-grid algorithm [2], and the field is up-
dated often enough so as to resolve plasma oscil-
lations [3]. A full-band representation [3] of the
electron dispersion relation, calculated using the
empirical pseudopotential method [4] is used. Lo-
cal, nonlocal and spin-orbit interactions are in-
cluded in the band structure calculation. The
full phonon spectra of the semiconductor materials
discussed in this work are calculated over the first
Brillouin Zone (BZ) with a valence shell model [3].
Scattering with deformation potential optical and
acoustic phonons and polar optical phonons is ac-
counted for. The screening model used for impu-
rity scattering is the Ridley model as discussed
in [3]. The carrier dynamics is simulated with the
Cellular Monte Carlo approach [5], where all of
the possible final momentum states for each ini-
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tial electronic state and for all possible scattering
mechanisms are pre-calculated and stored in large
look-up tables. This approach reduces the final
state selection process during run-time to the gen-
eration of a single random number, and is up to
50 times faster than the Ensemble Monte Carlo
approach for bulk simulations [6].

II. Frequency analysis, two approaches

A common approach to extract the small-signal
parameters of a device is to apply to one of its
electrodes a small perturbation about a steady-
state condition, while keeping all other parame-
ters constant. In the case of a sinusoidal pertur-
bation applied to the drain of a FET, the source
potential is grounded, a constant bias VGS is ap-
plied to the gate and ṽDS(t) = V0sin(ω0t) repre-
sents the variations of the drain voltage. To en-
sure small-signal conditions, the amplitude V0 of
the sinusoidal excitation is one or two orders of
magnitude smaller than the applied DC voltages,
and VDS ± V0 remains in the saturation region of
the current-voltage characteristic of the transis-
tor. The sinusoid is simulated for one full period
T , setting the input frequency of the voltage per-
turbation ω0 = 2π/T . The frequency analysis is
performed with Fourier transforms, given for the
drain voltage variations by,

v̂ds(ω) =

∫ +∞

−∞
(ṽds(t))e

−jωtdt,

= V0
ω0

ω2 − ω2
0

(
e
−j2π ω

ω0 − 1
)
,

(1)

where the (x̂) symbol denotes the Fourier trans-
formed variable. At ω = ω0, the Eq. 1 simplifies
to v̂ds(ω) = V0π/jω0 and equals zero for harmon-
ics ωk = kω0 with k �= 1, v̂ds(ωk) = 0. In a sim-
ilar manner, the transient drain current response
ĩd(t) = id(t)− Iss is also analyzed in the frequency
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domain. Its Fourier transform îd(ω) is given by,

îd(ω) =

∫ T

0

ĩd(t)e
−jωtdt,

= DT

N−1∑
n=0

ĩ(nDT )e−jωnDT ,

(2)

where Iss is the initial and the final steady-state,
the simulation time T is sampled into N steps of
duration DT , at the end of which the drain current
variation is sampled. The frequency-dependent
admittance Ŷ22(ω) is then obtained as the ratio of
the Fourier-transformed drain current variations,
and the Fourier-transformed drain voltage varia-
tions. Due to the monochromatic nature of the
perturbation, the energy of the signal is mainly
centered around the input frequency ω0. Con-
sequently, an optimal noise-to-signal ratio is ob-
tained for ω = ω0. At ω = ω0, the corresponding
complex impedance Zout can be expressed as,

Zout(ω0) = (Ŷ (ω0))
−1 = R(ω0) + jX(ω0), (3)

where R(ω0) and X(ω0) are the resistance and the
reactance, respectively.

Values of the output impedance at different
frequencies can then be obtained by applying
perturbations at the drain electrode, at differ-
ent frequencies and computing the resulting com-
plex impedance. The major advantages of this
method are its simplicity, robustness and flexi-
bility because there are no limitations in terms
of frequency resolution. Sparse measurements
can be achieved in the regions of low variations,
finer ones where the impedance undergoes rapid
changes. On the other hand, the analysis based
on monochromatic perturbation becomes compu-
tationally expensive if a wide frequency survey of
the output impedance behavior is needed, as the
number of required simulations is as large as the
spectrum is. To overcome this issue, the Fourier
decomposition [7], [8], [9] offers an alternative fre-
quency analysis approach. A step voltage of am-
plitude ∆V0 is applied to the drain electrode, dur-
ing a time T long enough to allow for the drain
output current response to recover steady-state.
The drain current is thus taken from an initial
steady-state Iss1 to a final steady-state Iss2 over
the time period T . The Fourier transform of both
the voltage and the current variations is taken,

v̂ds(ω) =
∆V0

jω
. (4)

and,

îd(ω) =

∫ T

0

ĩd(t)e
−jωt +

∫ +∞

T

∆Ie−jωt, (5)

assuming that after a time T , the current response
reaches a final steady-state Iss2 , and the current
variation after t = T is ∆I = Iss2 − Iss1 . In the
discrete time case, Eq. 5 becomes,

îd(ω) = DT
N−1∑
n=0

ĩd(nDT )e−j2π kn
N + ∆I

e−jωT

jω
, (6)

where the simulation time T = NDT and the dis-
crete frequencies ωk are given by ωk = 2πk/T
for k = 0, 1, ..., N/2. The complex frequency-
dependent impedance can be derived in the same
manner as for the monochromatic excitation. The
frequency resolution of the method is determined
by the total simulation time T , whereas the up-
per limit of the analyzed spectrum fmax is set by
the sampling time-step DT as ∆ω = 1/T and
fmax = 1/2DT . The major advantage of this
approach is its computational efficiency, in fact,
the entire spectrum can be spanned with a single
simulation. Whereas a monochromatic sinusoidal
function only carries one single frequency, the step
voltage conveys the whole frequency spectrum. It
is therefore appropriate for a broadband frequency
analysis of semiconductor devices. However, ob-
taining a fine frequency resolution can be an issue
as it requires an inversely large simulation time.
For finer analysis of a particular frequency inter-
val, the sinusoidal excitation approach is more ap-
propriate.

III. Results

These two techniques have been tested on var-
ious semiconductor devices. Figure 1 shows a
plot of the resistance and the reactance versus fre-
quency for a Gallium Arsenide MEtal Semicon-
ductor Field Effect Transistor, (GaAs MESFET)
with a gate length LG = 100 nm and a donor
concentration ND = 1018 cm−3. Each couple
{R(ω), X(ω)} represents one simulation obtained
with the monochromatic excitation approach.

The frequency fm at which the reactance
reaches its maximum negative value is related to
the characteristic relaxation time τ measuring the
minimum switching time of the device,

τ = 2πfm. (7)
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Fig. 1. Variations of the Complex Output Impedance with
Frequency, for a 100 nm long GaAs MESFET.

The output voltage gain falls rapidly for frequen-
cies higher than fm and for this reason, it is often
referred to as the cut-off frequency. For the sim-
ulated GaAs MESFET device, a cut-off frequency
fm = 80 GHz is found, and falls in the expected
frequency range for such devices [10].

To illustrate the implementation of the Fourier
decomposition approach, a Silicon On Insulator
Metal Oxide Semiconductor FET (SOI-MOSFET)
inspired by a recent INTEL publication [11] has
been simulated. Its gate length is LG = 70 nm, the
donor and acceptor concentrations are ND = 1020

and NA = 1014 cm−3, respectively, and the insula-
tor thickness is 1.5 nm, as illustrated in Fig. 2. DC
characterization of the device has been achieved
and full IV curves have been simulated.
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Fig. 2. Schematic layout of a SOI-MOSFET, with a 70
nm wide gate length and a 1.5 nm thick oxide layer.

To perform the small-signal analysis of the de-
vice, a step voltage ∆V = 0.2 V has been ap-
plied to the drain electrode, while the initial bi-
ases VDS = 0.5V and VGS = −1.0 V have been
simulated for 10 ps to place the device in steady-

state. The drain step-voltage is maintained for
50 ps which corresponds to a frequency resolution
∆f = 20 GHz. Figure 3 shows the real and the
imaginary part of the output impedance versus
frequency.
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Fig. 3. Variations of the Complex Output Impedance with
Frequency, for a 70 nm long SOI MOSFET.

Unlike the sinusoidal excitation case, this curve
is obtained by only one simulation. A cut-off fre-
quency of approximately 1 THz is found, which
agrees with its announced terahertz application
range.

When applied to the same device, the Fourier
decomposition and the sinusoidal excitation yield
similar results, as illustrated on Fig. 4. The sim-
ulated device is a GaAs MESFET with a gate
length LG = 98 nm and a donor concentration
ND = 5× 1017 cm−3. The applied steady-state bi-
ases are VDS = 1 V and VGS = −1.0 V. To account
for Fermi level pinning effects, a positive bias of
+0.6 V has been applied at the top of the device,
between the source and the gate, and between the
gate and the drain. A drain step voltage of ampli-
tude 0.2 V has been simulated for 50 ps to ensure
a frequency resolution of 20 GHz. On Fig. 4, the
solid line shows the frequency-dependent output
resistance and reactance obtained with Fourier de-
composition approach, while those obtained with
sinusoidal excitations are represented by the dis-
crete points.

Although a good agreement is observed, more
work needs to be done to fully compare the two
approaches. A noise analysis could determine
whether one is more stable or less noisy than the
other. In the case of the Fourier decomposition,
the amplitude of the applied step voltage should
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Fig. 4. Frequency-dependent output impedance of a 98
nm wide GaAs MESFET, obtained with the Fourier
decomposition approach, (solid line) and with 10
monochromatic sinusoidal excitations (discrete points).

stay in the small-signal range (i.e. several hun-
dred millivolts) [9]. However, for devices showing
a strong drain current saturation, a small ampli-
tude drain step-voltage does not yield appreciable
drain current variation, and makes the extraction
of significant transients challenging. On the other
hand, the use of a larger step-voltage might results
in apparition of harmonics in the current response.
Although large step voltages have been applied,
such harmonics have not been observed. Further
investigation is required to understand why and
to see the impact of applying large step-voltage
on the device transient characteristics. Although
rather noisy for certain devices,the transient out-
put current does not require smoothing in the con-
text of this work. In fact, when shifting to the fre-
quency domain, the Fourier transforms performs
a systematic filtering. The discrete Fourier trans-
forms implemented in this work are a 0th order ap-
proximation. Higher orders discrete models have
been implemented, and investigated. Their benefit
allows to reduce aliasing observed at high frequen-
cies. However, the investigated device frequencies
are one or two order of magnitude smaller than
that where aliasing occurs, and consequently, the
use of higher order Fourier transforms is not rele-
vant for the purpose of this work.

IV. Conclusion

Two approaches to perform a small-signal in-
vestigation of semiconductor devices have been
described and implemented to analyze the

frequency-dependent output impedance of several
GaAs MESFETs and a SOI-MOSFET. The sim-
ulated small-signal parameters show good agree-
ment with published data, and a comparison of
the two approaches when applied to a same de-
vice shows comparable results. While the main
advantage of the Fourier decomposition is that it
allows to span the entire frequency spectrum with
one simulation, its main restriction comes from the
requirement in long simulation times to achieve
fine frequency resolution. This is avoided within
the monochromatic sinusoidal excitation formal-
ism. More work needs to be to fully compare the
stability and applicability of both methods.
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